Imen Oueslati

Informations générales

Imen Oueslati
Grade

Post Doc

Biographie courte

Imen Oueslati est docteure en informatique de gestion de l’Institut Supérieur de Gestion de Tunis, en cotutelle avec l’Université d’Artois (laboratoire LGI2A – Génie Informatique et Automatique). Sa thèse, intitulée « Generation Hyperheuristics for Multi-Objective Scheduling problems», porte sur le développement de nouvelles hyperheuristiques, de sélection et de génération, appliquées aux problèmes d’ordonnancement dans les domaines de la santé et de la production industrielle. Ses travaux proposent notamment une hyperheuristique inspirée du comportement des abeilles, une approche basée sur la programmation génétique intégrant des mécanismes d’apprentissage, ainsi qu’une hyperheuristique multi-objective combinant NSGA-II et hyperheuristiques pour produire des fronts de Pareto de haute qualité.

Elle est titulaire d’un Master en Sciences et techniques de l’informatique de décision (2019) et d’une Licence en informatique de gestion (2017), tous deux obtenus à l’Institut Supérieur de Gestion de Tunis.

Elle a également occupé un poste d’ATER (Attachée Temporaire d’Enseignement et de Recherche) à l’Université d’Artois en France, où elle a enseigné les Systèmes de gestion de bases de données, l’optimisation, la programmation orientée objet, ainsi que d’autres unités d’enseignement en informatique. Par ailleurs, elle a enseigné à l’Institut Supérieur de Gestion de Tunis des matières telles que les systèmes logiques, l’intelligence artificielle, les protocoles réseaux, des applications Python pour la finance, etc. Elle a aussi co-encadré plusieurs projets de fin d’études de licence en informatique de gestion et en Master professionnel Data Science.

Publications

  • 2023
    Imen Oueslati, Moez Hammami, Issam Nouaouri, Ameni Azzouz, Lamjed Ben Said, Hamid Allaoui

    A Honey Bee Mating Optimization HyperHeuristic for Patient Admission Scheduling Problem

    In proceedings of The 9th International Conference on Metaheuristics and Nature Inspired Computing META Marrakech, Nov 01-04, 2023, 2023

    Résumé

    Hyperheuristics represent a generic method that provides a high level of abstraction, enabling solving several problems in the combinatorial optimization domain while reducing the need for human intervention in parameters tuning. This category consists in managing a set of low-level heuristics and attempting to find the optimal sequence that produces high-quality results. This paper proposes a hyperheuristic that simulates the honey bees mating behavior called “Honey bee Mating Optimization HyperHeuristic”  to solve the Patient Admission Scheduling Problem (PASP). The PASP is an NP-hard problem that represents an important field in the health care discipline. In order to perceive the influence of low-level heuristics on the model’s performance, we implemented two versions of the hyperheuristic that each one works on a different set of low-level heuristics. The results show that one of the versions generates better results than the other, revealing the important role of low-level heuristics’ quality leading to enhancing the hyperheuristic performance.

  • Imen Oueslati, Moez Hammami

    Honey Bee Cooperative HyperHeuristic

    special issue: Knowledge- Based and Intelligent Information and Engineering Systems: Proceedings of the 25th International Conference KES2021 Volume 192, 2021, Pages 2871-2880, 2021

    Résumé

    Hyperheuristics form a new concept that provides a more general procedure for optimization. Their goal is to manage existing low-level heuristics to solve a large number of problems without specific parameter tuning.
    In this paper, we propose three hyperheuristics based on honey bees behaviour: ”Bee colony optimization HyperHeuristic” BCOH2, ”Honey bee Mating Optimization HyperHeuristic” HBMOH2 and ”Honey Bee Cooperative HyperHeuristic” HBCH2 which cooperates between the two mentioned hyperheuristics. The proposed hyperheuristics are implemented under the Hyflex platform. Tested on the MAX-SAT and the Bin Packing problems, our algorithms showed good results compared to hyperheuristics participating in the CHeSC competition.