Effective Resource Utilization in Heterogeneous
Hadoop environment through a Dynamic
inter-cluster and intra-cluster Load Balancing

Emna Hosni![0000—-0003-3430-2966] \Wided chaari’, Nader Kolsi2, and Khaled
Ghedira®

! National School of Computer Sciences, LARIA, Tunisia
{emna.hosni,wided.chaari}@ensi-uma.tn
2 Tunis School of Business, LARIA, Tunisia nader.kolsi@esct.uma.tn
3 UIK, Université Ibn Khaldoun, Tunisia
Khaled.ghedira®@uik.ens.tn

Abstract. Apache Hadoop is one of the most popular distributed com-
puting systems, used largely for big data analysis and processing. The
Hadoop cluster hosts multiple parallel workloads requiring various re-
source usage (CPU, RAM, etc.). In practice, in heterogeneous Hadoop
environments, resource-intensive tasks may be allocated to the lower per-
forming nodes, causing load imbalance between and within clusters and
and high data transfer cost. These weaknesses lead to performance deteri-
oration of the Hadoop system and delays the completion of all submitted
jobs. To overcome these challenges, this paper proposes an efficient and
dynamic load balancing policy in a heterogeneous Hadoop YARN clus-
ter. This novel load balancing model is based on clustering nodes into
subgroups of nodes similar in performance, and then allocating different
jobs in these subgroups using a multi-criteria ranking. This policy en-
sures the most accurate match between resource demands and available
resources in real time, which decreases the data transfer in the cluster.
The experimental results show that the introduced approach allows re-
ducing noticeably the completion time s by 42% and 11% compared with
the H-fair and a load balancing approach respectively. Thus, Hadoop can
rapidly release the resources for the next job which enhance the overall
performance of the distributed computing systems. The obtained finding
also reveal that our approach optimizes the use of the available resources
and avoids cluster over-load in real time.

Keywords: Heterogeneous cluster - Resource allocation- Multi-criteria decision
- Big Data - Hadoop

1 Introduction

Over the last decade, several parallel computing systems have been developed
for massive data processing. Hadoop 4 is one of the most popular systems for

* https://hadoop.apache.org/

2 E. Hosni et al.

distributed computing and parallel processing. Indeed, the processing of data-
intensive applications has become increasingly complex. The processing tech-
nique used is to divide large datasets into small partitions, so that each small
task runs simultaneously on an individual partition [5]. Hadoop has three ma-
jor layers, namely HDFS (Hadoop Distributed File System) and MapReduce,
used for data storage and processing respectively, and Yarn (Another Resource
Negotiator), used for resource management and job scheduling. In a hetero-
geneous Hadoop environment, over-allocation of resources for some jobs and
under-utilization of cluster resources can occur [1]. In this situation, it may be
necessary to move jobs from low-performance nodes to high-performance nodes
in real time to finish fast. In order to improve the overall performance of Hadoop,
effective load balancing is crucial to avoid the overhead of data transfer inter-
cluster and intra-cluster, as well as optimize resource utilization. These issues
are more common in heterogeneous Hadoop environments with different node
and task characteristics. Moreover, if jobs cannot be executed effectively in het-
erogeneous clusters, a data transfer overheads may be incurred because available
resources are not used efficiently to meet resource requirements. Therefore, to
balance workloads according to the resources available in the cluster, data must
be distributed accurately and efficiently to reduce data transfer costs. In this con-
text, several contributions were developed [5] [9][1] to improve load balancing and
resource utilization in Hadoop. Practically, in a heterogeneous Hadoop cluster
the CPU cores, memory size and storage speed, etc are not similar. Considering
this heterogeneity in the allocation of tasks allows for better load balancing and a
reduction in execution time. However, the above-cited articles did not effectively
handle node heterogeneity and multiple real-time resource requirements per job.
This weakness can lead to sub-optimal load balancing where job requirements
do not match the resources available in the Node Managers. Thus, to evaluate
the load imbalance in Hadoop Yarn, we used in this study, different types of jobs
running on heterogeneous nodes. The new load balancing model is designed for
the Yarn architecture ensures an accurate match between the resource required
and available ones. First, the deployed system profiles the available nodes by
grouping them into clusters of similar capacity. The system then makes a dy-
namic, multi-criteria decision to rank each job based on its resource demand. It
then uses the generated node groups and job rankings to dynamically allocate
the most appropriate resources and reduce data transfers within the cluster.
Experimental results show that the suggested approach improve load balancing
considering a heterogeneous environment. The remaining paper is organized as
Section .2 presents the related work. Section.3 formulates the problem statement.
Section.4 presents the proposed load balancing policy. Section .5 illustrates the
experimental results. Finally, Section. 6 provides some concluding remarks and
presents a brief conclusion and future works.

Effective Resource Utilization in Heterogeneous Hadoop environment 3

2 Related Works

In recent years, heterogeneity of computing systems in clusters is one of the
most critical challenges facing distributed computing systems. It has become an
important area of research, especially in the Hadoop Yarn system, thanks to the
development of various load balancing strategies and scheduling approaches. In
fact, several studies have been conducted to deal with the heterogeneity prob-
lems in Hadoop system, mainly load imbalance and resource wastage. The het-
erogeneous environment may cause an imbalance in resource utilization between
over-loaded and under-loaded hosts, which degrades resource usage. For this end,
many authors [3][8][1][2][9] have developed a dynamic approaches to deal with
the heterogeneity challenges, essentially in terms of resource utilization. In [8]
suggested performance-based clustering of Hadoop nodes to load data among
the cluster nodes. However, the author did not take into account the different
resources requirements by job when loading data, which leads to load imbal-
ance and inefficient resource allocation. Kairos [3], improved Hadoop scheduling
decision. In contrast, he only took into account job heterogeneity and neglects
the capabilities of nodes, which affect resource usage and result in poor clus-
ter performance. Besides, TMSA algorithm [13] improved the load balancing in
Hadoop Yarn. It considered the node heterogeneity using a prediction model
integrated on each Node Manager to estimate the end time of a task. However,
this algorithm was developed at a small-scale, which does not clearly reflect the
scalability of the approach. In [7] the authors designed an approach to balance
the workload based only on the computing capacity of the node. However, it uses
the static resource to obtain the processing capabilities per node. It can also lead
to load imbalance in a heterogeneous environment, which deteriorates the over-
all performance of the Hadoop system. In [9], the authors proposed a scheduler
H-fair in a heterogeneous Hadoop environment. They selects jobs for scheduling
based on a global dominant resource fairness heterogeneous strategy, and dis-
patches them on nodes with a same characteristics to the resource demands using
the cosine similarity. This approach was compared to the Fair Scheduler. The
authors focused only on the heavy workloads with highly resource. In contrast,
in a heterogeneous Hadoop environment, when allocating tasks, it is important
to consider multiple task requests to better satisfy the requirements in a parallel
computing environment. In [1], the authors proposed a load balancing approach
for a MapReduce Job running on a heterogeneous Hadoop cluster. However, they
focus on balances the load among the heterogeneous nodes only in the Reduce
phase of MapReduce. This work ignores multi-task assignment and does not
monitor over-loading and under-loading of nodes while running tasks, which can
lead to inefficient and inaccurate resource utilization between high performance
and low performance nodes. Therefore, an optimal selection of nodes must be
made to achieve a good match between the resource requirements and the nodes
capabilities in real time. This is our main motivation for developing efficient load
balancing in a heterogeneous Hadoop environment. On the other hand, IoT de-
vices can be called upon to provide a wide variety of services. It is obvious that
efficient allocation of IoT resources (processing power, storage capacities, etc.)

4 E. Hosni et al.

would enhance IoT performance. But the optimal allocation of resources for the
IoT is difficult to achieve given its its distributed and heterogeneous nature [6].
In this paper, we combine a multi-criteria approach to rank jobs, and clustering
of nodes for an accurate allocation decision. This combination improved the ac-
curacy of assigning the most appropriate resources to job demand. We modify
the analytical hierarchy process [10] to create dynamic scores according to the
resources requirements, i.e., the most demanding jobs are executed in the most
powerful nodes within a group of nodes.

3 Problem Statement

Given a heterogeneous Hadoop cluster H consists of a resource manager (RM)
and n node managers (NMs) that have different performance, executing a J set
of jobs, each with various resource requirements, our aim is to achieve the best
match between available resources and resource requirements to improve resource
utilization and subsequently reduce inter-cluster and intra-cluster data transfer.
We classify the nodes according to the current resource usage (CPU, RAM, Disk
I/0) in descending order within each node group. This classification is applied
to select the most appropriate nodes for job processing, which minimizes data
transfer between nodes and node groups. The node with the highest utilization
of available resources has the highest priority for job execution. The proposed
policy achieve the best load balancing that reduces the number of remote jobs,
improves the locality rate and resource utilization. It also avoids under-loading
and over-loading in heterogeneous Hadoop environments. This section formally
describes the model used in this paper, which consists of jobs, nodes, and clusters.

3.1 Jobs

We consider that a set of n jobs J = {j1,...,Jm} are assigned to to a hetero-
geneous Hadoop cluster H. Each job j; requires different resources in terms of
CPU usage, memory usage and I/O. A set of jobs J run in cluster H where
each job j; has a different resource demand. We can define it as follows :
Ji = {id;, Depuy, Dmy, D(1/0);,T;},1 = 1,...,m, where id; is an unique num-
ber that identifies a job j;, and Dcpu;, Dm;, D(I/O);, represent the different
resources requirements by a given job. Tj is a set of tasks generated by a job
j that must be completed for the job to finish its execution successfully. To
evaluate the data transfer time per task T/, we can estimate it as follows [4]:

Tttran — M (1>

cap;

where, |d¢| is the size of data block, cap; is task transfer capacity.

3.2 Nodes
The heterogeneous Hadoop cluster H contains a set of nodes denoted as H =
{N1,..., N, } having different capacities. We define heterogeneous hardware re-

sources with various performance parameters (CPU, RAM, Disk I/0) provided

Effective Resource Utilization in Heterogeneous Hadoop environment 5

by each node. The cluster H is a group of related nodes including a Master
Node, represented by RM, and slaves nodes which are the NM. Note that in the
current Hadoop YARN system, only two resources are included, memory and
CPU during resources allocation process. However, the proposed load balancing
model take into account the CPU utilization, Disk I/O utilization and Memory
utilization of nodes in H during job execution. The CPU performance of each
node P(cpu;) is given bellow [14] :

P(Cpui) = fcpu(i) X nbco(i)v nbeo = 1. (2)

Where fepy,,, is the CPU frequency of the it" node, nb,, is the number of CPU
cores. During Job processing, we can calculate the CPU utilization (%) as [12] :

U(cpu;) = (100% — Time spent in idle Task %) (3)

Where, U(cpu;) is the CPU utilization of the Node i. The memory capacity
of each node i depending on the size of the RAM of each node i : RAM; =
Sizepam (). We carry out the Memory Utilization (%) as :

Rr;
T(M)

U(M;) = x100 i=1...,n (4)

Here U(M;) is the memory utilization of the i** node, Rr; is the size of used
memory of N; for the given job and T(M) is a total memory available in the
node. Then, we compute the Disk I/O utilization (%) as [12] :

Ty

rq

U(Di) =

x100 i=1...,n (5)

U(D;) is the disk 1/O of the i*" node, T}, is the total number of bytes transferred
and T4 is the total time from the first request until the end of the last transfer.
The node’s storage in cluster H is available for use in the HDFS, Sy (i) represent
the storage capacity of the node ¢. The global load of the node can be estimated
as follows:

Load(N;) = o Ulepu;) + 5 U(M;) +~ U(D;) (6)

Here coefficients o« + 8 + v = 1, which take probable values between [0, 1].
The value of « is relatively high for CPU-intensive jobs, the value of § will
be increased if the computational capacity is memory-dependent and the value
of v will be high for jobs that require more Disk I/O. The node load ratio is
calculated as follows:

_ Load(N;)

Lno e N1
ae(N5) Cap(nNi)

x 100 (7)

Where cap(n) is the resource capacity of node in terms of CPU, Memory and
Disk I/0.

6 E. Hosni et al.

3.3 Cluster
The cluster load ratio Load(H) can be calculated as follows:
iy Load(N;)

Load(H) =
) = S eanos

x 100 (8)
Where Y | cap(n,) is the total resource capacity of all nodes in the cluster
cluster H in terms of CPU, Memory and Disk I/O. As shown in formula (8),
this value is an accurate measure of the cluster load balancing. This should be
the used capacity of all nodes ¢ in the cluster H. To calculate the over-loading
of the cluster H, the threshold is taken as the sum of the maximum memory
usage maz(U(M)), maximum Disk I/O maz(U (D)) and maximum CPU usage
max(U(cpu)) in all the cluster, divided by the number of nodes n in the cluster.
The equation for the over-load threshold O g is shown below :

max(U(cpu)) + max(U(M)) + max(U (D))

(9)

Hadoop clusters operating under heavy load have a significant influence on
cluster performance. Thus, in order to ensure the success rate of task execution in
Hadoop Yarn, the proposed approach sets a threshold O, represented by the
maximum load defined in Eq.9. When the load of a node exceeds the threshold
value, The Resource Manager RM should not allocate tasks to this node yet.
Once the cluster is over-loaded, the maximum load is automatically set to 100%.

Oy =

4 Effective Load Balancing Policy in Heterogeneous
Hadoop Clusters

The main goal of the proposed policy is to improve the performance of Hadoop
which is a distributed computing systems requiring an optimized utilization of
its available resources at run-time. Therefore, efficient clustering of available
nodes and multi-criteria job ranking are combined to effectively assign the cluster
resources according to the job requirements. The major contributions of our
policy is presented in three steps:

— iterative clustering of available nodes using efficient k-means algorithm. [11].

— The analytic hierarchy process [10] is used to assign score for jobs according
to their resource requirements.

— Efficiently distributes the load in real time within and between groups of
nodes.

4.1 Clustering of nodes

In the Hadoop Yarn cluster, the Node Managers NMs send nodes status and
heartbeat messages, containing the resources availability in terms of CPU uti-
lization, Memory utilization, Disk I/O utilization to RM. In this paper, we con-
sider variations in resource utilization and hardware failures in the cluster. For

Effective Resource Utilization in Heterogeneous Hadoop environment 7

this reason, we start the clustering node phase, once the changes in the cluster
and the failed nodes are identified by the RM. Groups of similar nodes are built
in real time based on the cluster status obtained by the heartbeat messages. We
applies the K-Means algorithm with an elbow [11] to optimize the effectiveness
of k-means in the processing of massive data i.e. when the cluster scales up.
Combining the elbow with K-Means resulted in a graph with error decreasing,
increasing the value of K then graph will decrease slowly until a stable result of
the K-value is achieved. Find K as the number of clusters to select the number
of K groups to be used for clustering. The information about the state of the
nodes cannot be processed directly, because there is a large difference between
the variables in the dataset. Therefore, we use the Min-Max normalization [11]
for the CPU speed, Memory and Disk I/O information’s. The features we select
for clustering will be expressed later as labels for groups of nodes. After creating
the groups of similar nodes, the groups will be ordered for all features, where
the performing node is among the group of nodes with a higher rank. After that,
the system attribute values ranging from 1 to n to the respective labels, where
n is the number of node clusters (groups). These labels are sent to the nodes
tracked by the Resource Manager and can then be used during the dynamic
resource allocation process. The node clustering phase is triggered according to
the variation of resource usage i.e. the current status of each node in the whole
cluster H. In the case of a failure node our algorithm ignores this node until its
reactivation. We present below the clustering steps used in our load balancing
policy:

— 1. Set three performance features (CPU, Disk I/O, RAM) in the k-means
algorithm.

— 2. Receive the status information from all NMs (if a node is failed, it will be

temporarily disregarded)

3. Min-Maxz Normalization [11] is used before the calculating process (all

values are scaled between the range 0,1 where 0 is the minimum value and 1

is the mazimum value) :

4. achieve the optimal number of clusters to create using the elbow method

[11].

5. Calculate the distance of each object to each centroid.

6. Assign each item into the nearest centroid

— 7. Perform iteration, then process find the position of new centroid

8. Repeat Step.7 if the new centroid position with the previous centroid is

not the same. (If not, then return the result of clustering nodes.)

4.2 Jobs Ranking

When, the client submits a job to the Resource Manager RM, the proposed
strategy identifies continuously the requested resource of each job j.

At this stage, dynamic AHP rankings based on hierarchical job information
are applied. The jobs raking step is developed using AHP method [10]: this step
is carried out by improving the accuracy of the AHP model. This improvement

8 E. Hosni et al.

(Goal.Criteria, Alternatives)

!

‘ Collection of historical information of jobs |

‘} Build the hierarchical levels of decision making J

(Perform pairwise comparaison matrices of criteria by
job j

4

| Calculate Weights for every job J

L |

| Check the consistency of the comparison Matrices |

~— Comsistency Rafio ™
=10%

Yes

ranking and select best available

¥

The job with the highest score in the list is selected to
be executed in the new container in NM

{ Compute overall weights and develop overall priority ‘

Fig. 1. Flowchart for analytical hierarchy process used for job raking

consists by collecting historical information using the APIs provided by Hadoop
to assign weight for jobs according to their resource requirements. Each job has
its own set of criteria (CPU,RAM,I/O) in terms of their resource demand. Once
all scores of all jobs are calculated, our system select the job with the highest
ranking means that it requires the highest amount of resources for processing as
shown in Fig.1. This process is applied dynamically depending on the current
state of the job submitted. The selected container is the most appropriate for
the resource requirements of the job. Our system, provide the best trade-off
between jobs J which is ranked based on Analytic Hierarchy Process AHP [10]
and the resource available in the heterogeneous cluster H. The second phase
aims to detect the most resource-intensive jobs with a higher score, based on
the different current resource demands. The elements of the matrix m;; are
represented by the weighing of the different criteria of the jobs defined by Z—]
We present the pairwise comparison matrix for criteria level as follows:

Criteria RAM CPU I/0O
RAM 1 mi2 M13
OPU 1 1 mos

mi2

I/0 L Lo

mi3 ma23

The consistency of the comparison Matrix should be checked in order to ensure a
high level of consistence. The consistency index C'I was obtained by the formula

Effective Resource Utilization in Heterogeneous Hadoop environment 9

[10] :
)\max —-n

CI = (10)

n—1
where A\pq: > n and n is the number of criteria which representing the number
of the compared elements. The consistency ratio C R was calculated using the

formula below : ol
CR = "I (11)

For reliable result, C' R value should be less than or equal to 0.1, Otherwise,
there is an inconsistency matrix and the comparison must be recalculated. RI
is a random consistency index presented by Saaty [10], where the number is
different considering the number of attributes used.

4.3 Dynamic inter-cluster and intra-cluster load balancing

After the job ranking phase, the Resource Manager receives a list of job priorities.
Our load balancing policy provides RM with the most appropriate nodes for
each job. The proposed system uses the node clustering and the job ranking list
currently provided to achieve the best match between job demand and available
resources in Hadoop cluster. Thus, labels are created for node clusters according
to their current capabilities. To evaluate the intra-cluster and inter-cluster load,
we have created the list of node groups denoted L, I; the i** node group in this
list and m the number of elements in L. We denote the total of CPU performance
in node group I; by l.p, which is based on Eq 2. Then, the system sort the nodes
in L in descending order in terms of the CPU performance.

lcpu(i)

ZZL:I lcpu(k)

where, Cpu;) , is the CPU utilization of [;, i lepu(r) 1s the total of
CPU performance in the list of node groups L. lcpy(;) the total number of CPU
cores available in the node group [;, Cpu(,_,) is the CPU utilization of [;_;.
The Resource Manager records the CPU usage received from the scoring jobs
phase of the current workloads and their execution history. For example, let a
CPU utilization for job j is 210% that mean a 100% utilization of 2 full CPU
cores and 10% of a third. The allocation system applies Cpu;, according to the
multi-criteria job ranking. The result obtained from Cpug;) is used to define a
CPU utilization range for each group of nodes [; in terms of CPU performance
(See Eq. 3). The minimum U (cpu;) is the lower bound of CPU usage per node in
l; and the value of Cpu ;) is the upper bound of CPU usage. This step is applied
on all features to build intervals for Memory utilization and Disk I/O utilization
using Eq.4 and Eq.5 in each group of node ;. Therefore, the proposed system
check in which range the CPU, RAM or disk I/O usage of such a job is situated.
Then, the system give the CPU characteristic a value between 1 and n according
to the rank of the range in which the job falls. Furthermore, the load balancing
policy defines the current global load in terms of CPU, RAM and disk I/0

Cpuqsy = + Cpug,_,) (12)

10 E. Hosni et al.

simultaneously of each node using load(N;), the load of the node group li with
load(H), and calculates the maximum resource usage thresholds of each node
cluster by O(g. If the utilization rate of the node i is higher than the maximum
resource usage threshold O(gy of the group of node (cluster). In this case, RM
should not allocate any tasks to this node, a new node clustering will restart.
As a result, this node will be placed in the low performance node group. The
introduced system aims to improve load balancing on a heterogeneous Hadoop
cluster so that the least resource-intensive jobs do not block the most powerful
nodes. The Load balancing conditions are : intra-cluster L, q.(N;) < load(H)
and, inter-cluster load(H) < Sg). Let L, be a list of pairs nodes-jobs where
the intra cluster nodes meet the resource requests of the jobs. The pairing-rate
for a nodes-jobs pairs is determined in 13 :

T

P(N,J) =) |Ni = J| (13)
k=1

where r is the number of features (CPU, RAM, I/0O), Nj and Jj, are the feature
labels for the job and node grouping pair. The feature label values are derived
from the node grouping and job scoring from previous phases. After applying
the pairing-rate P(N, J) to all L pairs, the lowest pairing-rate indicates the best
resource allocation. To determine the matching rate, we give an example of the
matching between three group of nodes using the following matrices.

group of nodes 1 RAM CPU [/0 group of nodes 2 RAM CPU 1/O

1 1 1 3 3 3
Rr 3 (9 — —) Rr 3 0 - -
Repu 3 _ 2 _ Repu 3 - 0 -
R(1/0) 2\ - - 1 R(I/0) 2\ - - 1
group of nodes 3 RAM CPU 1I/O
1 1 2
Rr 3 2 - -
Repu 3 — 2 -
R(I/0) 2 - - 0

Fig. 2. Example of three matrices of node groups

The example explain where job j has to be allocated to one of three available
node groups (conducted during phase 4.1). The job j has the labels I; = 3,15 =
3,l3 = 2, where [is the Rr which is RAM label,ls the Repu which is CPU
label, and I3 the R(I/O) which is I/O label. The result of applying of P(N,.J)
to all pairs of L is the sum of the main diagonal. The node groups 1 has 2+2+1
=5, the second has 1 and the third has 4 on the diagonal. When the sum of
the diagonal is lower the load balancing on the Hadoop cluster is optimized. In
this case, the group of nodes 2 is the best to fulfill the resource demand of the
submitted job. If there is more than one node group with the same ranking,

Effective Resource Utilization in Heterogeneous Hadoop environment 11

we start with the most performing node group. The values obtained from this
matching that are closer to 0 mean that the resource requirements of the job
match the capabilities of the nodes. Since, higher resource demand leads to higher
values J,. Within the node groups, the proposed load balancing select the node
according to the intra-cluster condition, which avoid the over-loaded situation in
Hadoop cluster. It also prevents resource-intensive tasks from being allocated to
lower performing nodes. The presented hybrid load balancing system performs
iterative clustering of nodes using the efficient k-means algorithm, which creates
groups of nodes with similar performance. After that, the system labels the jobs
using AHP ranking while considering their resource demand. The jobs are sorted
according to their overall weights. Then, the system combine the node groups
and job scoring to achieve an accurate match between the required and available
resources. It is based on the matching function explained by the pairing-rate for
a nodes-jobs P(N, J).

5 Experimental results

The evaluation of the load balancing approach proposed in this paper is per-
formed with a different configuration of each node. The cluster consists of 10
heterogeneous nodes, one of which is defined as a resource management node
and nine as worker nodes with heterogeneous capabilities. All nodes were de-
ployed using VMware and were run on the Ubuntu 16.04 operating system. Our
experimental environment was deployed in two physical machines: one has a
(CPU Intel core 17-12700KF,3.6 GHz, 12-cores, 32 G of RAM), and the other
has a (CPU Intel Core i9-7960X, 2.8GHz, 16 Cores 64G of RAM). We used
Hadoop YARN 2.7.6 to run the experiments. We implemented our load balanc-
ing algorithm in all nodes. The HDF'S block size and the replication level were
set to 128MB and 3, respectively. First, the proposed approach classifies nodes
according to their performance at run time. This node clustering is carried out
according to three main features : CPU, RAM and Disk I/O. The k-means algo-
rithm generates 3 groups of nodes that have an intra-group similarity in terms
of resources availability. A high-performance node group including N2, N8 and
N6, medium-performance nodes N3 and N1, and the low performance nodes in-
cluding N7, N5,N9 and N4. The multi-criteria job scoring process dynamically
provided the ranking of 10 jobs submitted at the same time, considering the
heterogeneity of its resource demands is shown bellow. Apache Hadoop Yarn
assumes that if the CPU usage is less than 20%, it is a low CPU intensive job,
otherwise it is considered a high CPU intensive job. We can see that jobs 8,
6 and 2 are resource intensive in terms of three criteria CPU, RAM and I/0,
compared to the others jobs. A different types of jobs such as WordCount and
TeraSort are used to carry out the experiment. The job’s configuration in the
experiment are: WordCount o = 0.8, 5 = 0.2,y = 0, and for TeraSort a = 0.2,
B = 0.8, v = 0 Our load balancing algorithm reduced noticeably the competi-
tion time of 10 jobs by 23% , 37% compared with H-fair and LB approach [1]
respectively. This allows to rapidly release the containers for the next job which

12 E. Hosni et al.

enhance the overall performance of the distributed computing systems. We used
different job type on different groups of nodes. Our approach achieved the min-
imum time spent while processing the job in the high performance group and in
the medium performance group. The suggest load balancing system assign the
resource-intensive jobs to the group of high-performance nodes, and inside each
group the nodes are sorted in descending order. Thus, job will be dynamically
allocated based on the load balancing conditions and the current capacity range
of each node to avoid over-loading in the heterogeneous cluster.

CPU | RAM | IO 0.8 800
80%
06 600

60% 2 =
5 o4 400 T
= @
2 -

40% § 0,2 200 E

£
20% € o0 o
Load H-Fair Proposed
0% Balancing
job1 job2 job3 job4 job5 job6 job7 job & job O Approach
(b) Average resource usage (10 jobs)
(a) Use of job resources using the AHP method W cru RAM [VO Time
B H-Fair LB approach [l Proposed B H-Fair L B approcach [l Proposed
wordcount wordcount

- o~

o o

3 3

2 2

(<] (]

]]

) Terasort =2 Terasort

0 100 200 300 400 500 0 100 200 300 400 500
(c) Execution time (sec) (d) Execution time (sec)

Fig. 3. (a). AHP Job Ranking, (b). Average resource usage, (c). Node Group 1, (d).
Node Group 2

6 Conclusion

In a heterogeneous environment, several problems, such as under-loading and
over-loading, may occur, which requires effective load balancing between and
within clusters. In this paper, an efficient hybrid load balancing approach applied
in a heterogeneous Hadoop cluster was proposed. It combines iterative clustering
of nodes and a dynamic multi-criteria decision that scores jobs according to the
required resource. Our main objectives were to improve the resources utilization,
reduce the job competition time and avoid load imbalance in a heterogeneous
cluster. In future work, we will improve our approach with higher scale while
evaluating the energy consumption of Iot heterogeneous devices in real time.

Effective Resource Utilization in Heterogeneous Hadoop environment 13

References

10.

11.

12.

13.

14.

. Bawankule, K.L., Dewang, R.K., Singh, A.K.: Load balancing approach for a

mapreduce job running on a heterogeneous hadoop cluster. In: International Con-
ference on Distributed Computing and Internet Technology. pp. 289-298. Springer
(2021)

Chen, W., Rao, J., Zhou, X.: Addressing performance heterogeneity in mapreduce
clusters with elastic tasks. In: 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). pp. 1078-1087. IEEE (2017)

Delgado, P., Didona, D., Dinu, F., Zwaenepoel, W.: Kairos: Preemptive data center
scheduling without runtime estimates. In: Proceedings of the ACM Symposium on
Cloud Computing. pp. 135-148 (2018)

Jia, R., Yang, Y., Grundy, J., Keung, J., Li, H.: A highly efficient data locality
aware task scheduler for cloud-based systems. In: 2019 IEEE 12th International
conference on cloud computing (CLOUD). pp. 496-498. IEEE (2019)

Karun, A.K., Chitharanjan, K.: A review on hadoop—hdfs infrastructure exten-
sions. In: 2013 IEEE conference on information & communication technologies. pp.
132-137. IEEE (2013)

Li, X., Da Xu, L.: A review of internet of things—resource allocation. IEEE Internet
of Things Journal 8(11), 8657-8666 (2020)

Naik, N.S., Negi, A., Br, T.B., Anitha, R.: A data locality based scheduler to en-
hance mapreduce performance in heterogeneous environments. Future Generation
Computer Systems 90, 423-434 (2019)

Paik, S.S., Goswami, R.S., Roy, D., Reddy, K.H.: Intelligent data placement in
heterogeneous hadoop cluster. In: International Conference on Next Generation
Computing Technologies. pp. 568-579. Springer (2017)

Postoaca, A.V., Pop, F., Prodan, R.: h-fair: asymptotic scheduling of heavy work-
loads in heterogeneous data centers. In: 2018 18th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGRID). pp. 366-369. IEEE
(2018)

Saaty, T.L.: Decision making for leaders: the analytic hierarchy process for decisions
in a complex world. RWS publications (1990)

Syakur, M., Khotimah, B., Rochman, E., Satoto, B.D.: Integration k-means clus-
tering method and elbow method for identification of the best customer profile
cluster. In: IOP conference series: materials science and engineering. vol. 336, p.
012017. IOP Publishing (2018)

Thu, M.P., Nwe, K.M., Aye, K.N.: Replication based on data locality for hadoop
distributed file system. 9th International Workshop on Computer Science and En-
gineering (WCSE 2019 ... (2019)

Wang, M., Wu, C.Q., Cao, H., Liu, Y., Wang, Y., Hou, A.: On mapreduce schedul-
ing in hadoop yarn on heterogeneous clusters. In: 2018 17th IEEE International
Conference On Trust, Security And Privacy In Computing And Communica-
tions/12th IEEE International Conference On Big Data Science And Engineering
(TrustCom/BigDataSE). pp. 1747-1754. IEEE (2018)

Yan, W., Li, C., Du, S., Mao, X.: An optimization algorithm for heterogeneous
hadoop clusters based on dynamic load balancing. In: 2016 17th International
Conference on Parallel and Distributed Computing, Applications and Technologies
(PDCAT). pp. 250-255. IEEE (2016)

