Publications

  • 2020
    Mouna Karaja, Meriem Ennigrou

    Solving Dynamic Bag-of-Tasks Scheduling Problem in Heterogeneous Multi-cloud Environment Using Hybrid Bi-Level Optimization Model

    HIS, 2020

    Abstract

    Task scheduling problem has attracted a lot of attention since it plays a key role to improve the performance of any distributed system. This is again more challenging, especially for multi-cloud computing environment, mainly based on the nature of the multi-cloud to scale dynamically and due to heterogeneity of resources which add more complexity to the scheduling problem. In this paper, we propose, for the first time, a new Hybrid Bi-level optimization model named HB-DBoTSP to solve the Dynamic Bag-of-Tasks Scheduling Problem (DBoTSP) in heterogeneous multi-cloud environment. The proposed model aims to minimize the makespan and the execution cost while taking into consideration budget constraints and guaranteeing load balancing between Cloud’s Virtual Machines. By performing experiments on synthetic data sets that we propose, we demonstrate the effectiveness of the algorithm.

    Mouna Karaja, Meriem Ennigrou

    Solving Dynamic Bag-of-Tasks Scheduling Problem in Heterogeneous Multi-cloud Environment Using Hybrid Bi-Level Optimization Model

    20th International Conference on Hybrid Intelligent Systems (HIS 2020), 2020

    Abstract

    Task scheduling problem has attracted a lot of attention since it plays a key role to improve the performance of any distributed system. This is again more challenging, especially for multi-cloud computing environment, mainly based on the nature of the multi-cloud to scale dynamically and due to heterogeneity of resources which add more complexity to the scheduling problem. In this paper, we propose, for the first time, a new Hybrid Bi-level optimization model named HB-DBoTSP to solve the Dynamic Bag-of-Tasks Scheduling Problem (DBoTSP) in heterogeneous multi-cloud environment. The proposed model aims to minimize the makespan and the execution cost while taking into consideration budget constraints and guaranteeing load balancing between Cloud’s Virtual Machines. By performing experiments on synthetic data sets that we propose, we demonstrate the effectiveness of the algorithm.
    Abir Chaabani, Lamjed Ben Said

    A co-evolutionary decomposition-based algorithm for the bi-level knapsack optimization problem

    International Journal of Computational Intelligence Studies, 2020

    Abstract

    Bi-level optimisation problems (BOPs) are a class of challenging problems with two levels of optimisation tasks. These problems allow to model a large number of real-life situations in which a first decision maker, hereafter the leader, optimises his objective by taking the follower’s response to his decisions explicitly into account. In this context, a new proposed algorithm called CODBA-II was suggested to solve combinatorial BOPs. The latter was able to improve the quality of generated bi-level solutions regarding to recently proposed methods. In fact, a wide range of applications fit the bi-level programming framework and real-life implementations still scarce. For this reason, we propose in this paper a co-evolutionary decomposition-based bi-level algorithm for the bi-level knapsack optimisation problem. The computational algorithm turned out to be quite efficient on both computation time and solution quality regarding to other competitive EAs.

    Nabil Morri, Sameh Hadouaj, Lamjed Ben Said

    An approach to intelligent control public transportation system using a multi-agent system

    Filipe, J., Śmiałek, M., Brodsky, A., Hammoudi, S. (eds) Enterprise Information Systems. ICEIS 2020. Lecture Notes in Business Information Processing, vol 417. Springer, Cham., 2020

    Abstract

    Traffic congestion has increased globally during the last decade representing an undoubted menace to the quality of urban life. A significant contribution can be made by the public transport system in reducing the problem intensity if it provides high-quality service. However, public transportation systems are highly complex because of the modes involved, the multitude of origins and destinations, and the amount and variety of traffic. They have to cope with dynamic environments where many complex and random phenomena appear and disturb the traffic network. To ensure good service quality, a control system should be used in order to maintain the public transport scheduled timetable. The quality service should be measured in terms of public transport key performance indicators (KPIs) for the wider urban transport system and issues. In fact, in the absence of a set of widely accepted performance measures and transferable methodologies, it is very difficult for public transport to objectively assess the effects of specific regulation system and to make use of lessons learned from other public transport systems. Moreover, vehicle traffic control tasks are distributed geographically and functionally, and disturbances might influence on many itineraries and occur simultaneously. Unfortunately, most existing traffic control systems consider only a part of the performance criteria and propose a solution without man-aging its influence on neighboring areas of the network. This paper sets the context of performance measurement in the field of public traffic management and presents the regulation support system of public transportation (RSSPT). The aim of this regulation support system is (i) to detect the traffic perturbation by distinguishing a critical performance variation of the current traffic, (ii) and to find the regulation action by optimizing the performance of the quality service of the public transportation. We adopt a multi-agent approach to model the system, as their distributed nature, allows managing several disturbances concurrently. The validation of our model is based on the data of an entire journey of the New York City transport system in which two perturbation scenarios occur. This net-work has the nation’s largest bus fleet and more subway and commuter rail cars than all other U.S. transit systems combined. The obtained results show the efficiency of our system especially in case many performance indicators are needed to regulate a disturbance situation. It demonstrates the advantage as well of the multiagent approach and shows how the agents of different neighboring zones on which the disturbance has an impact, coordinate and adapt their plans and solve the issue.

    Ameni Azzouz, Abir Chaabani, Meriem Ennigrou, Lamjed Ben Said

    Handling Sequence-dependent Setup Time Flexible Job Shop Problem with Learning and Deterioration Considerations using Evolutionary Bi-level Optimization

    Applied Artificial Intelligence, 34(6), 433-455, 2020

    Abstract

    Bi-level optimization is a challenging research area that has received significant attention from researchers to model enormous NP-hard optimization problems and real-life applications. In this paper, we propose a new evolutionary bi-level algorithm for Flexible Job Shop Problem with Sequence-Dependent Setup Time (SDST-FJSP) and learning/deterioration effects. There are two main motivations behind this work. On the one hand, learning and deterioration effects might occur simultaneously in real-life production systems. However, there are still ill posed in the scheduling area. On the other hand, bi-level optimization was presented as an interesting resolution scheme easily applied to more complex problems without additional modifications. Motivated by these issues, we attempt in this work to solve the FJSP variant using the bi-level programming framework. We suggest firstly a new bi-level mathematical formulation for the considered FJSP; then we propose a bi-level evolutionary algorithm to solve the problem. The experimental study on well-established benchmarks assesses and validates the advantage of using a bi-level scheme over the compared approaches in this research area to solve such NP-hard problem.

    Abir Chaabani, Slim Bechikh, Lamjed Ben Said

    A co-evolutionary hybrid decomposition-based algorithm for bi-level combinatorial optimization problems.

    Soft Computing, 24(10), 7211-7229, 2020

    Abstract

    Bi-level programming problems are a special class of optimization problems with two levels of optimization tasks. These problems have been widely studied in the literature and often appear in many practical problem solving tasks. Although many applications fit the bi-level framework, however, real-life implementations are scarce, due mainly to the lack of efficient algorithms able to handle effectively this NP-hard problem. Several solution approaches have been proposed to solve these problems; however, most of them are restricted to the continuous case. Motivated by this observation, we have recently proposed a Co-evolutionary Decomposition-based Algorithm (CODBA) to solve bi-level combinatorial problems. CODBA scheme has been able to bring down the computational expense significantly as compared to other competitive approaches within this research area. In this paper, we further improve CODBA approach by incorporating a local search procedure to make the search process more efficient. The proposed extension called CODBA-LS includes a variable neighborhood search to the lower-level task to help in faster convergence of the algorithm. Further experimental tests based on the bi-level production–distribution problems in supply chain management model on a set of artificial and real-life data turned out to be effective on both computation time and solution quality.

    Malek Abbassi, Abir Chaabani, Lamjed Ben Said, Nabil Absi

    Bi-level multi-objective combinatorial optimization using reference approximation of the lower-level reaction.

    International conference on Knowledge Based and Intelligent information and Engineering Systems (On Line), 2098-2107, 2020

    Abstract

    Bi-level optimization has gained a lot of interest during the last decade. This framework is suitable to model several real-life situations. Bi-level optimization problems refer to two related optimization tasks, each one is assigned to a decision level (i.e., upper and lower levels). In this way, the evaluation of an upper level solution requires the evaluation of the lower level. This hierarchical decision making necessitates the execution of a significant number of Function Evaluations (FEs). When dealing with a multi-objective optimization context, new complexities are added and imposed by the conflicting objectives and their evaluation techniques. In this paper, we aim to reduce the induced complexity using approximation techniques in order to obtain the lower level optimality. To this end, ideas from multi-objective optimization have been extracted, improved, and hybridized with evolutionary methods to build an efficient approach for Multi-objective Bi-Level Optimization Problems (MBLOPs). In this work, three techniques are suggested: (1) a complete lower level approximation Pareto front procedure, (2) a reference-based approximation selection procedure, and (3) a sub-set reference-based approximation selection one. The proposed variants are applied to a new multi-objective formulation of a well-known combinatorial problem integrating two systems in the supply chain management, namely, the Bi-level Multi Depot Vehicle Routing Problem (Bi-MDVRP). The statistical analysis demonstrates the efficiency of each algorithm according to a set of metrics. Indeed, a large number of savings are detected which confirms the efficiency of our proposals for solving combinatorial optimization problems.

    Malek Abbassi, Abir Chaabani, Lamjed Ben Said, Nabil Absi

    An improved bi-level multi-objective evolutionary algorithm for the production distribution planning system

    In International Conference on Modeling Decisions for Artificial Intelligence, MDAI’20, 2020

    Abstract

    Bi-level Optimization Problem (BOP) presents a special class of challenging problems that contains two optimization tasks. This nested structure has been adopted extensively during recent years to solve many real-world applications. Besides, a number of solution methodologies are proposed in the literature to handle both single and multi-objective BOPs. Among the well-cited algorithms solving the multi-objective case, we find the Bi-Level Evolutionary Multi-objective Optimization algorithm (BLEMO). This method uses the elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) with the bi-level framework to solve Multi-objective Bi-level Optimization Problems (MBOPs). BLEMO has proved its efficiency and effectiveness in solving such kind of NP-hard problem over the last decade. To this end, we aim in this paper to investigate the performance of this method on a new proposed multi-objective variant of the Bi-level Multi Depot Vehicle Routing Problem (Bi-MDVRP) which is a well-known problem in combinatorial optimization. The proposed BLEMO adaptation is further improved combining jointly three techniques in order to accelerate the convergence rate of the whole algorithm. Experimental results on well-established benchmarks reveal a good performance of the proposed algorithm against the baseline version.

    Thouraya Sakouhi, Jamal Malki, Jalel Akaichi

    A Mobility Data Model for Web-Based Tourists Tracking

    In The 14th International Baltic Conference on Databases and Information Systems (BalticDB&IS 2020)., 2020

    Abstract

    Tracking tourists activities at different levels of their journeys provides an overview on their mobility and a comprehension of their behavior and preferences. Most information related to tourism services and tourists are collected and stored through web platforms. In fact, self-drive tourists access touristic information available on the web to plan for their trips. Accordingly, tourism professionals track their requirements in touristic information and then their mobility. Yet, since touristic information is managed at a territorial level, tracking tourists’ movement by tourism professionals, out of their territory, is not a straightforward task. Accordingly, the latters do not have a complete overview of tourists movements. Throughout this paper authors will start by discussing mobility data capture through the web and the related challenges. Then, they’ll introduce an integrated mobility data model for tracking tourists.

    Ameni Azzouz, Meriem Ennigrou, Lamjed Ben Said

    Solving flexible job-shop problem with sequence dependent setup time and learning effects using an adaptive genetic algorithm

    International Journal of Computational Intelligence Studies, 9(1-2), 18-32., 2020

    Abstract

    For the most schedulling problems studied in literature, job processing times are assumed to be known and constant over time. However, this assumption is not appropriate for many realistic situations where the employees and the machines execute the same task in a repetitive manner. They learn how to perform more efficiently. As a result, the processing time of a given job is shorter if it is scheduled later, rather than earlier in the sequence. In this paper, we consider the flexible job-shop problem (FJSP) with two kinds of constraint, namely, the sequence-dependent setup times (SDST) and the learning effects. Makespan is specified as the objective function to be minimised. To solve this problem, an adaptive genetic algorithm (AGA) is proposed. Our algorithm uses an adaptive strategy based on: 1) the current specificity of the search space; 2) the preceding results of already used operators; 3) their associated parameter settings. We adopt this strategy in order to maintain the balance between exploration and exploitation. Experimental studies are presented to assess and validate the benefit of the incorporation of the learning process to the SDST-FJSP over the original problem.