Deep Reinforcement learning

Description

Aucune description disponible pour cet axe de recherche.

Publications

  • 2022
    Khaoula Hantous, Lilia Rejeb, Rahma Helali

    Detecting physiological needs using deep inverse reinforcement learning

    Applied Artificial Intelligence: AAI, 36(1), 1–25. doi:10.1080/08839514.2021.2022340,, 2022

    Résumé

    Smart health-care assistants are designed to improve the comfort of the patient where smart refers to the ability to imitate the human intelligence to facilitate his life without, or with limited, human intervention. As a part of this, we are proposing a new Intelligent Communication Assistant capable of detecting physiological needs by following a new efficient Inverse Reinforcement learning algorithm designed to be able to deal with new time-recorded states. The latter processes the patient’s environment data, learns from the patient previous choices and becomes capable of suggesting the right action at the right time. In this paper, we took the case study of Locked-in Syndrome patients, studied their actual communication methods and tried to enhance the existing solutions by adding an intelligent layer. We showed that by using Deep Inverse Reinforcement Learning using Maximum Entropy, we can learn how to regress the reward amount of new states from the ambient environment recorded states. After that, we can suggest the highly rewarded need to the target patient. Also, we proposed a full architecture of the system by describing the pipeline of the information from the ambient environment to the different actors.

    Ameni Hedhli, Haithem Mezni, Lamjed Ben Said

    Predictive BPaaS management with quantum and neural computing

    Journal of Software: Evolution and Process, 34(2), e2421.‏, 2022

    Résumé

    With the increasing adoption of cloud computing, the deployment and management of business processes over cloud environments have become an essential operation for most enterprises, leading to the emergence of BPaaS (Business Process as a Service) as a new cloud service model. This SaaS-like service, like its ancestors, should be strategically distributed and managed over multiple cloud zones, while taking into account several constraints and conditions (e.g., sensitivity of BPaaS fragments, insecure and untrusted cloud zones, lack of resources, and workload changes). However, current BPaaS approaches are static, which means that they are no longer suitable to manage such enterprise-oriented cloud service model and to deal with the uncertain and dynamic nature of cloud availability zones. To fill this gap, we adopt a predictive BPaaS management strategy by proposing a model that forecasts the next-short time overload of cloud zones. These latter, as hosting environments for the managed BPaaS, are categorized as overloaded or underloaded, which triggers the migration of BPaaS fragments to high-performance cloud zones. The proposed neural network prediction model (called QGA-NN) is enhanced with a quantum genetic algorithm to optimize the prediction of cloud zones' overload. QGA-NN is evaluated using a BPaaS placement algorithm, which we defined as a triggered management operation. Experimental results have proved the accuracy and effectiveness of our predictive approach, compared with state-of-the-art solutions.